
CS106A
Winter 2013-2014

Handout #21
February 10, 2014

Assignment 4: Readability Indices

Thanks to Sophia Westwood for suggesting Flesch-Kincaid readability as an assignment, to Eric Roberts for the syllable-counting
heuristic, and to the CS106A section leaders for preflighting the assignment. Thanks to Leonid Shamis for suggesting the libraries used

in the web scraper. This assignment uses the Readability API (www.readability.com), the Jsoup library, and the simple-json library.

Many word processing programs (such as Microsoft Word) employ readability indices that estimate
how difficult it is to read passages of text. Groups that produce written materials for wide audiences
(non-profit groups, government agencies, etc.) often use these readability indices to check that the ma-
terials they produce aren't too complex for a general audience.

In this assignment, you'll implement two readability indices. In the process, you'll get a much stronger
understanding of strings, decomposition, testing, debugging, file processing, and ArrayLists.

Due Wednesday, February 19 at 3:15PM

Assignment Review Hours: Thursday, February 13th, 5:30PM – 6:30PM in Hewlett 200

- 1 -

http://www.readability.com/

Assignment Overview
As of 2014, computers are notoriously bad at reading text. Even the most advanced algorithms for pro-
cessing text still get tripped up on simple examples. Given this, readability indices work using heuris-
tics, approaches for solving a problem that, while often accurate, are not always correct. In this assign-
ment, you'll implement two standard heuristics for estimating text complexity: the Flesch-Kincaid
grade level test and the Dale-Chall readability score.

The Flesch-Kincaid grade level test estimates at what grade level a reader would have to be in order to
comprehend a text. For example, a passage with Flesch-Kincaid grade level of 5.15 could be read by a
typical fifth-grader, while a passage with grade level 15.1 would be appropriate for a typical college ju-
nior. The Flesch-Kincaid grade level score is evaluated by counting the number of words, sentences,
and syllables in a piece of text, then computing

Grade=C₀+C₁(num words
num sentences

)+C₂(num syllables
num words

)

where C₀, C₁, and C₂ are constants given later in this handout. Intuitively, more complicated texts tend
to have longer sentences (therefore, more average words per sentence) and longer words (therefore,
more average syllables per word), so the above value is often a good approximation of the actual
readaibility. Notice that Flesch-Kincaid makes no attempt whatsoever to determine what the text actu-
ally says; it just examines simple structural properties of that text and extrapolates from that.

The Dale-Chall Readability Formula works along the same lines. It's evaluated by counting up the
number of total words, sentences, and “difficult words” in the text, then computing

Difficulty=D₀(num difficult words
numwords

×D₁)+D₂(num words
num sentences

)+ D₃bonus

Here, D₀, D₁, D₂, D₃, and bonus are described later in this handout. As before, since complicated texts
tend to have long sentences and difficult words, this formula works well in practice.

Whereas the Flesch-Kincaid score directly maps to an estimated grade level, the Dale-Chall readability
index evaluates to a numerical score that can be interpreted according to the following table:*

Score Difficulty

0 – 5 Readable by an average 4th grader.

5 – 6 Readable by an average 5th or 6th grader.

6 – 7 Readable by an average 7th or 8th grader.

7 – 8 Readable by an average 9th or 10th grader.

8 – 9 Readable by an average 11th or 12th grader.

9 – 10 Readable by an average college student.

10+ Readable by an average college graduate.

As with Flesch-Kincaid, notice that the Dale-Chall readability test doesn't make any attempt to actually
understand the text it reads. It just computes simple statistics and bases its guess on that.

We've broken this assignment down into seven smaller steps, each of which you can design and test in
isolation. Once you've completed all of them, you'll have a slick, clean piece of software that can esti-
mate reading complexities.

* Source: http://en.wikipedia.org/wiki/Dale-Chall_Readability_Formula.

- 2 -

http://en.wikipedia.org/wiki/Dale-Chall_Readability_Formula

Step One: Estimate Syllables in a Word
In order to compute the Flesch-Kincaid or Dale-Chall scores for a piece of text, you'll need to be able
to count up the number of syllables in a word. Your job in this step is to write a method

private int syllablesInWord(String word)

that takes in a single word and returns the number of syllables in that word.

It is difficult to determine the exact number of syllables in a word just from its spelling. For example,
the word are has just one syllable, while the similarly-spelled area has three. Therefore, we aren't go-
ing to ask you to count syllables exactly. Instead, you should approximate the number of syllables us-
ing the following heuristic: count up the number of vowels in the word (including 'y'), except for

• Vowels that have vowels directly before them, and

• The letter e, if it appears by itself at the end of a word.

Notice that under this definition, the word me would have zero syllables in it, since the 'e' at the end of
the word doesn't contribute to the total. To address this, your method should always report that there is
at least one syllable in any input word, even if the heuristic would otherwise report zero. This resulting
method will correctly estimate that there are two syllables in quokka and two syllables in springbok,
though it does get the number of syllables in syllable wrong (guessing two instead of three). With the
zero-syllable correction in place, the heuristic correctly counts syllables in the words the, be, and she.

Test your method thoroughly before moving on. Think about how the heuristic works and choose
test words that ensure your code correctly implements the heuristic. When testing, don't worry if the
answer your program gives isn't exactly the correct number of syllables in the word (you're using a
heuristic, after all), but do make sure that your program produces values that agree with what we've de-
scribed above.

Here is a sample run of the testing program using our own solution code:

These tests aren't exhaustive and you should definitely test your program on more sample inputs than
shown here.

Question 1 of the assignment writeup asks what specific words you chose as test cases and why
you chose them, so we recommend answering that writeup question before moving on to the next
part of the assignment.

- 3 -

Step Two: Implement Tokenization
To compute the Flesch-Kincaid or Dale-Chall scores of a document, you will also need to count up
how many words and sentences there are in the document. To make it easier to do this, you will use a
technique called tokenization (also called lexical analysis or scanning) to break the document down
into simpler constituent parts.

For example, suppose that you have the following document:

Time flies like an arrow. Fruit flies like a banana.

If this document is represented as a single string, you won't be able to use your syllablesInWord
method from Step One of the assignment to count up how many total syllables there are in the docu-
ment; that method assumes that the input is a single word, not a collection of words. To make it easier
to identify where the words are, you will write a function to tokenize the string by breaking it down into
a number of smaller strings (called tokens), each of which represents either a word, space, or punctua-
tion symbol. For example, you might split the above document into these pieces:

Time flies like an arrow . Fruit flies like a banana .

Notice that each piece is either a word (“Time,” “arrow,” etc.), a punctuation symbol (“.”), or a space
character (“ ”). Your job in Step Two of this assignment is to implement a method

private ArrayList<String> tokenize(String input)

that will accept as input a string that should be cut into tokens and which returns an ArrayList holding
all of those tokens.

Determining the “right” tokenization of an arbitrary string is difficult, so for this part of the assignment
you will use the following heuristics:

• Any consecutive sequence of letters becomes a single token containing those letters.

• Any character that isn't a letter becomes a token consisting of just that character.

For example, the text

I think, therefore I am.

would be tokenized as

I think , therefore I am .
Similarly, the text

I am (because I think).

Should be tokenized as

I am (because I think) .
Since this is just a heuristic, there's no guarantee that this will correctly tokenize all strings. For exam-
ple, under our definition of a token, the string isn't would be tokenized as the three tokens: isn, ', and t.
Similarly, the string Wait... would tokenize as the four tokens Wait, ., ., and ..

We recommend using the following approach. Read the characters of the string from the left to the
right. If the character you read isn't a letter, then that character should be in a token by itself. Other-
wise, it's a letter. Keep reading characters from the string until you run out of characters or read a non-
letter character. The token consists of all the letter you read up until the end of the string or the non-let-
ter character you found.

- 4 -

Test your method before moving on; there are many cases that your code needs to be able to handle
and (based on our own experience coding up this method) you probably will have a few bugs in your
initial implementation. We recommend changing your run method to the following, which will read in
a line of text from the user, tokenize it, then output all of the tokens:

public void run() {
 while (true) {
 String line = readLine("Enter text to tokenize: ");
 if (line.isEmpty()) break;

 ArrayList<String> tokens = tokenize(line);
 println(" Number of tokens: " + tokens.size());
 for (int i = 0; i < tokens.size(); i++) {
 println(" Token #" + (i + 1) + ": [" + tokens.get(i) + "]");
 }
 }
}

Here's a sample run of the program with correct outputs:

Be sure to test this program on lots of other inputs; there are many cases to consider! Question 2 of the
writeup asks you what specific strings you used to test this method and why you chose them, so
we recommend answering that question before moving on to the next part of the assignment.

- 5 -

Step Three: Count Words, Syllables, and Sentences
At this point, you've written two major methods: one that counts syllables in a word and one that tok-
enizes a line. Your job in this Step is to write these three methods:

private int syllablesInLine(ArrayList<String> tokens)

private int wordsInLine(ArrayList<String> tokens)

private int sentencesInLine(ArrayList<String> tokens)

Each of these methods will accept as input an ArrayList<String> containing a tokenized version of a
line of text, then will report the total number of syllables in that line, the total number of words in that
line, and the total number of sentences in that line, respectively.

To count up the number of syllables in a line of text, you can just sum up the number of syllables in
each word in that line. We'll consider a word to be any token that starts with a letter. You can count up
the number of words using a similar approach. Finally, you can approximate the number of sentences
in that line by adding up the number of times you see a period, question mark, or exclamation point in
that line. This isn't a perfect measure, but it should work quite well.

Before moving on, why don't you write some testing code to see if your methods work correctly? We'll
leave the task of writing the testing code to you. When we coded up our version of this assignment, we
wrote some testing code of our own. Here's a sample output from our testing program with the (correct)
counts for each line.

Question 3 of the writeup asks you what specific strings you used to test these methods, so we rec-
ommend answering that question before moving on to the next part of the assignment.

- 6 -

Step Four: Support File Reading
At this point, you're now able to read individual lines of text from the user and compute the number of
syllables, words, and sentences from those lines of text. In order to compute the readability index of an
entire piece of text, you can just read that text one line at a time, counting up how many syllables,
words, and sentences there are in each line, and then use the formulas from the start of the handout to
compute the final grade level score.

To do this, you'll write a method that reads the contents of a file. Write a method

private ArrayList<String> fileContents(String filename)

This method should accept a filename as input, then return an ArrayList<String> containing all of
the lines of the file. If you can't open the specified file (either because it doesn't exist or because the
user typed in the name of the file incorrectly), your method should return null to indicate that the file
couldn't be read.

As before, be sure to test this program before you move on to the next step. Here's the output of a pro-
gram that we wrote to test out our own fileContents method:

Step Five: Implement the Flesch-Kincaid Grade Level Test
Now that you have all the pieces, it's time to put them together to compute the Flesch-Kincaid grade
level score for a piece of text. Your job is to write the following method:

private double fleschKincaidGradeLevelOf(ArrayList<String> lines)

This method should accept as input an ArrayList<String> containing the lines of a file (note that this
isn't the same as a list of all the tokens in the file) and return the Flesch-Kincaid grade level score for
the text of that file. As a reminder, the value should be computed as

Grade=C₀+C₁(num words
num sentences

)+C₂(num syllables
num words

)

where C₀, C₁, and C₂ are these constants:

C₀ = -15.59 C₁ = 0.39 C₂ = 11.8

- 7 -

(I have no idea where these numbers came from, but they're the standard numbers used in computing
these scores.) When computing the above formula, you should sum up the total number of words, sylla-
bles, and sentences across all the lines of the file.

You might notice that this formula isn't defined if there are zero sentences or zero total words, so in the
event that the text has no words or no sentences, you should pretend that it contains a single word or a
single sentence, respectively.

Having written this method, update your run method so that it sits in a loop prompting the user for the
name of a file to read. If the user enters the name of a file, you should read that file and output its
Flesch-Kincaid grade level. If the user enters an invalid filename, you should print out an error and re-
prompt the user. Finally, if the user hits enter without typing anything in, your program should exit.
Here are some sample screenshots of our program, along with the Flesch-Kincaid grade level it reports
for the different sample files we've provided:

You might notice that the DrSeuss.txt file gives back a negative grade level score. That's okay – the
Flesch-Kincaid score can be negative for very simple texts.

Step Six: Implement The Dale-Chall Readability Score
Your job in this step is to write a method

private double daleChallReadabilityScoreOf(ArrayList<String> lines)

As a reminder, the Dale-Chall score is computed as

Difficulty=D₀(num difficult words
numwords

×D₁)+D₂(num words
num sentences

)+ D₃bonus

where D₀, D₁, D₂, and D₃ are chosen as

D₀ = 0.1579 D = ₁ 100 D = ₂ 0.0496 D = 3.6365₃
Here, a “difficult word” is defined to be a word with three or more syllables. The bonus here is 1 if at
least 5% of the words are difficult words and is 0 otherwise, which adds to the difficulty of the text if a
large fraction of the words are difficult.

- 8 -

As with Flesch-Kincaid readability, if the text contains no words or no sentences, you should pretend
that it has at least one word or at least one sentence, respectively.

You currently have most, but not all, of the methods you'll need to implement this method. We're going
to leave the decisions about how to design and test this method up to you!

Then, update your program so that it displays both the Flesch-Kincaid grade level and the Dale-Chall
readability score for the input programs. Here's a sample run of our version of the program, including
the scores we computed for various pieces of text:

Step Seven: Interface with the Web
Wouldn't it be cool if you could also analyze the readability levels of different webpages; say, the New
York Times, Wikipedia, or the Stanford Daily? In this part of the assignment, you'll do just that.

As part of the starter code, we've provided you a method you can use to get the text of a webpage as an
ArrayList<String>. You can use it by calling

lines = Scraper.pageContents(url);

where URL is a string that starts with either http:// or https://. If the page can't be opened, then
this method will return null as a sentinel. Note that this method might take a second or two to run,
since it needs to download the given webpage and extract the text of the main article on that page.

Update your program so that when the user types in the name of the document to read, your program
will decide whether or not that file is a URL. If it's a URL (i.e. it starts with http:// or https://),
then your program should use Scraper.pageContents to get the contents of that page, then compute

- 9 -

its readability. Otherwise, if it's not a URL, your program should open up a file on disk and compute its
readability as before. You now have a single program that can determine the readability of any file you
have on disk and any file on the web!

Step Eight: Writeup
Now that you've finished all the coding for this assignment, we'd like you to do a quick writeup an-
swering some questions about your experience with this assignment. Edit the writeup.txt file with
your answers to the following questions:

1. What specific words did you use to test your syllable-counting code? Why did you choose each
of those words as test cases?

2. What specific strings did you use to test your tokenize method? Why did you choose those
strings?

3. What specific strings did you use to test your code for counting syllables, words, and sentences
in a line of text? Why did you choose those strings?

4. Find a piece of text of your own choosing and compute its Flesch-Kincaid grade level and Dale-
Chall readability scores using the program you've written. What numbers did you get back?
Were you at all surprised? (We recommend trying out your program on some text from one of
your favorite books; say, one of the Harry Potter titles, Fifty Shades of Grey, or perhaps Karel
the Robot Learns Java. Project Gutenberg, located online at http://www.gutenberg.org/, might
be a good place to look for older books now in the public domain.)

Advice, Tips, and Tricks
Here are some suggestions that might be helpful as you work through this assignment:

• Remember that your heuristic for counting syllables should always report at least one syllable
in each word.

• When counting syllables, remember that the words may be given with any capitalization. Your
syllablesInWord method should produce the same outputs given as input any of the words
Capitalized, capitalized, CAPITALIZED, or cApItAlIzEd.

• When implementing tokenization, we suggest avoiding the String.split, the Scanner class,
and the StringTokenizer class (don't worry if you haven't seen these before). They are not
particularly useful for splitting strings apart in the way that is required for this assignment.

• When tokenizing a string, you may need to convert a char into a String. You can do this by
writing "" + ch, where ch is the character you want to convert.

• Remember that you should compare strings using the .equals() method and not using ==.

• Make sure that your tokenization code works correctly on an input string that ends with a word
not followed by any punctuation symbols.

• Some pieces of text will have a negative Flesch-Kincaid grade level. That's okay – it just means
that the text is very simple.

• When computing the ratios in the Flesch-Kincaid and Dale-Chall readability scores, remember
that integer division is not the same as real division – integer division alway rounds down,
while real division won't.

• When computing readability, remember that you should treat every document as having at least
one word and at least one sentence. You might get slightly different results from us if you
forget to handle this or handle this improperly.

- 10 -

http://www.gutenberg.org/

Extension Suggestions
Want to go above and beyond on this assignment? Here are some suggestions on how you can improve
the program.

• The current tokenization algorithm will split words like “isn't” or “doesn't” into three pieces.
Try modifying the tokenization algorithm to not split compound words like these. You might
also want to adjust the syllable-counting heuristic to handle contractions elegantly.

• The “true” version of the Dale-Chall score leaves out common suffixes like “es” and “ed” from
words when counting up the number of syllables they contain. Try updating your program to
take this into account.

• There are many other readability indices besides Flesch-Kincaid or Dale-Chall. Choose an im-
plement one of them as an extension.

• In a previous quarter, a student used their program to analyze the readability levels of various
US patents and compared them to the average education level of a trial jury to provide an
interesting window into the complexities of patent litigation. Try using your program to analyze
the complexities of different pieces of text and see if you can draw any conclusions from them.
If you find anything interesting and include a writeup, we'd be happy to award you extra credit.

• The readability indices described here are designed to work on written texts. Could you try to
use similar heuristics to determine the complexity of materials other than written texts, such as
song lyrics or poetry?

Good luck!

- 11 -

